

How to get started with

BioStar 2 SDK

Compiled by

George Cartlidge

2

What is the API or SDK, and what is the difference?

API stands for Application Programming Interface, where SDK stands

for Software Development Kit.

An API is a set of functions that allows you to interface with an

existing bit of software (I.E BioStar 2), This means any interaction

with Suprema devices will need an installation of BioStar 2 to be

already installed and that you are actually interacting with the

BioStar 2 server and not the devices. Starting with BioStar 2.7.10,

there is a new version of the API that includes more functions.

An SDK is a collection of tools that you can use to develop your own

applications using a particular framework/platform. Regarding the

BioStar 2 SDK, this will be the BS_SDK_V2.dll file. This .DLL contains

many APIs that can be used with C++ & C# programming languages.

There is also the new G-SDK which functions along the same principal

but is based upon gRPC which can support more languages that the

existing SDK. Using the SDK, you cut BioStar 2 out completely and

directly interact with the device.

Comparing both, the API will be used where you are happy for

BioStar 2 to handle most of the work, BioStar 2 would be storing the

fingerprint and user data; The API lets you use BioStar 2 from inside

another application, so it does not look like BioStar 2. The SDK will be

used when you want to connect directly to the device from your own

application; Your application would have to handle the connection

and the storage of data. The SDK will also allow you to use specific

API’s that are not available in the BioStar 2 API.

3

SDK

In the next part of this guide, I will be going through the standard

device SDK as it currently supports more features than the new

G-SDK, the G-SDK will be covered in a future guide (Note: The G-SDK

will support more features than the device SDK eventually). As they

can use the same languages and devices, there will be a lot of

overlap at least, I will also be looking at the C# examples.

Loading through Visual Studio

So! The first thing you will need is a copy of your favourite code

compiler, I will use Visual studio, if you are downloading Visual Studio

for the first time, Download Visual Studio Community 2019 (Not

Visual Studio Code, with that, you’ll be able to view the code, but not

Build and interact with it).

For both C++ and C#, examples are included of how to interact with

the SDK, for the C# Example this is the entire BSDemo project, which

is a very good set of tools that you can use to troubleshoot Suprema

devices (Its under 5MB too!).

Second, head over to the Suprema GitHub & download a copy of the

SDK components (https://github.com/supremainc/BioStar2_device_SDK)

This will give you a zip ‘BioStar2_device_SDK-master’, extract this. So

it looks like the below.

https://github.com/supremainc/BioStar2_device_SDK

4

We will first load through the BSDemo project, just to get an

overview. From the Visual Studio window, click ‘Open a local folder’

and browse to the ‘Example_CSharp’ folder

5

Now we’re getting somewhere! On the right-hand side, it will now

load the folder view, navigate so it looks like the picture below and

select the ‘BSDemo.sln’ file to load the project.

The view on the right should appear, these are all the separate

programs. Let’s use ‘Upgrade control’ as a test, as it’s the one I most

often use (You can connect to devices and update their firmware).

Clicking this project will open the files view, the important one is the

‘Program.cs’, its looks very simple, but this is because it uses the

other .cs files in the folder

6

Text Above:

Unit test = This Means it is using the ‘UnitTest.cs’, This is what connects to the devices#

UpgradeControl = This means it is using the ‘UpgradeControl.cs’ (Which can upgrade the

FW)

I’ll go into a view of the ‘UpgradeControl.cs’ code, The ‘UnitTest.cs’ is a bit bigger and not as easily viewable as to what each part does.

14

7

Text Above:

RED: “Upgrade firmware” : This Section prompts the user for a selection of what they wish

to do, the first option is ‘Upgrade Firmware’ and will forward to the ‘upgradeFirmware’

section.

YELLOW: upgradeFirmware : This is the section that is loaded from above, pulling through

the variables from above too.

GREEN: ‘Firmware Path’: Rgus sectuib orinots tge yser fir a ‘Firmware Path’ variable, IE

Where the file is stored. This is then used in the below process.

“Util.cs” “(Load Binary)”: This section uses a function from ‘Util.cs’ “(Load Binary)” to load

the firmware file and outputs it as the ‘firmwareData’ variable.

BLUE: “UpgradeFirmware”: The above part is the important bit! This uses the

‘BS2_UpgradeFirmware’ API to send the data from ‘firmwareData’ to the device that

maches the ‘deviceID’ variable that the pain program forwards from ‘UnitTest.cs’. Upgrading

the device!

8

9

Building the program

While browsing any specific project, pressing ‘Ctrl + B’ will build the

project, which means we get a shiny new .exe out of Visual Studio!

As this is an already setup project, it shouldn’t have a problem

creating the program and will export to the bin\Debug folder of the

UpgradeControl program.

‘BioStar2_device_SDK-master\Example_Csharp\cli\csharp\

windows\BSDemo\UpgradeControl\bin\Debug’ if you are using the

SDK folder like above.

Open the program and give it a test! (You may be prompted for

firewall access)

You can say no to setting up SSL (This uses a secure certificate to talk

to the device) and no to outputting the debug message (We don’t

need it)

Below I will search for the devices by pressing 1, it will list the

devices, the BioStation2 Is closest to me so lets choose that. Now

were connected to the device, it loads the code above! You can see

the selection for upgrading firmware, it will then ask for a file, and

send that file to the device.

A screenshot of my output is below:

10

We have just run our first compiled program from visual studio!

11

Final thoughts for making your own programs

The following requires a bit more understanding of Visual Studio and

working with C#

Above, as the program was already made, it included the basics

already. If you create an entirely new project, you will need to add

the source files yourself. Create a new C# Project and it will look like

the below:

This will generate a basic program, On the right-hand columns, right

click *NameOfYourApp* and add an existing item.

12

Browse to the SDK Folder and select the ‘common’ folder beneath

‘csharp’, You can include all the .cs files here, below is what they do:

i. FunctionModule.cs : Display the functions which are implemented in BSDemo(SDK package demo

source)

ii. SEApi.cs : Lists APIs
iii. SEEnum.cs : Lists enum
iv. SFStruct.cs : Lists structure
v. UnitTest.cs : Initialize the device and provides ways to connect to device.
vi. Util.cs : Device I/O control

This will add them to the tree view. Next we will have to copy the

SDK files to the Project folder, This will be the ‘lib’ from the SDK

folder. Mine would be:

C:\Users\gcartlidge\Documents\BioStar2_device_SDK-

master\SDK\Lib\Window\lib

Next, Right click the project and go to properties and enter the below

under ‘Build Events’ & ‘pre-build event command line’

copy "$(ProjectDir)lib\$(PlatformTarget)\BS_SDK_V2.dll" "$(TargetDir)"

copy "$(ProjectDir)lib\$(PlatformTarget)\libeay32.dll" "$(TargetDir)"

copy "$(ProjectDir)lib\$(PlatformTarget)\libssl32.dll" "$(TargetDir)"

copy "$(ProjectDir)lib\$(PlatformTarget)\ssleay32.dll" "$(TargetDir)"

13

For the last property, right click the very top of the tree

‘Solution ‘*ProjectName*’’ and select

Properties > Configuration > Configuration Manager

Press ‘OK’ on x64, then close and close.

Press Ctrl + B and there shouldn’t be any errors!

If there are any errors, it will be worth checking that the Build Events

file names match the files in the ‘lib’ folder.

Next, add the namespace by adding the two lines below:

14

To test, Building the below code should output the version of the

SDK! (If your namespace name is also ‘MyFirstBiostarSDK’, If not,

change the namespace name below.)

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Runtime.InteropServices;

using Suprema;

namespace MyFirstBioStarSDK {

class Program {

static void Main(string[] args) {

 //3.1.2 SDK version information check

IntPtr versionPtr = API.BS2_Version();

Console.WriteLine("SDK version : {0}", Marshal.PtrToStringAnsi(versionPtr));

Console.ReadKey();

} } }

That should be the basics on getting you setup to code,

Go forth and try your luck!

Note: If you wish to use a namespace other than ‘Suprema’, you will

need to go through and update the imported .cs files with the

namespace of your choice.

